遺伝統計学

「遺伝統計学」の編集履歴(バックアップ)一覧はこちら

遺伝統計学 - (2007/07/06 (金) 17:37:00) の1つ前との変更点

追加された行は緑色になります。

削除された行は赤色になります。

=項目= *[[アーミテージ検定]] =その他= * sequence coverage ** raw value for coverage: ::<math>\frac{L+T}{R}</math> :ここでRはリファレンスであるSNPセット(たとえばHapMap SNP)、Tはtag SNPセット(tagSNPと、それによってまとめられるSNP)である。ここで、ゲノム全体のSNPセット<math>G>R</math>であるためこの式ではcoverageを過大に評価してしまう。したがって ::<math>\frac{\left ( \frac{L}{R-T} \right ) (G-T)+T}{G}</math> :ENCODEの予測から、<math>G \approx</math>7500万と示唆されているが、これが1億だからといって予測が大きく変わるわけではない。 ==r<sup>2</sup>とpower== *真のsusceptible locusであるlocus 1でcase-control N<sub>1</sub>サンプルをタイピング、近傍のマーカーlocus 2でN<sub>2</sub>サンプルをタイピングし関連研究をしたとする。 **locus 1のアレルはAとa、locus2のアレルはBとb。 **<math>\pi_{DA}</math>はケースのAアレル頻度、<math>\pi_{CA}</math>はコントロールのAアレル頻度。 **q<sub>AB</sub>はある染色体上でlocus1がアレルA、locus2がアレルBである確率。 *すると、(論文ではつづめてあったがバカな自分のために展開) ::<math>\pi_{DB}-\pi_{CB}=(\pi_{DA}-\pi_{CA})q_{AB}+(\pi_{Da}-\pi_{Ca})q_{aB}</math> ::<math>=(\pi_{DA}-\pi_{CA})q_{AB}+(1-\pi_{DA}-1+\pi_{CA})q_{aB}</math> ::<math>=(\pi_{DA}-\pi_{CA})(q_{AB}-q_{aB})</math> *するとlocus1での関連解析の[[遺伝用語#カイ二乗|カイ二乗統計量]]は、ケースのサンプル数:コントロールのサンプル数=φ:1-φとすると、 ::<math>\chi^2_1 = \frac{\{(\phi 2N_1+(1-\phi) 2N_1\}\{\phi 2N_1\hat{\pi}_{DA}(1-\phi)2N_1\hat{\pi}_{Ca}-\phi 2N_1\hat{\pi}_{Da}(1-\phi)2N_1\hat{\pi}_{CA}\}^2}{\phi 2N_1 (1-\phi) 2N_1 \hat{\pi}_A 2N_1 (1-\hat{\pi}_A)}</math> ::<math>= \frac{(\hat{\pi}_{DA}-\hat{\pi}_{CA})^2 2N_1 \phi (1-\phi)}{\hat{\pi}_A(1-\hat{\pi}_A)}</math> ::ここで、<math> \hat{\pi}_{DA}, \hat{\pi}_{CA}, \hat{\pi}_A</math>はそれぞれ患者、コントロール、全体でのアレルAのサンプル頻度である。AをBにしてN<sub>1</sub>をN<sub>2</sub>にすればlocus 2の<math>\chi^2_2</math>となる。 *<math>\chi^2_1</math>と<math>\chi^2_2</math>の分布はだいたい正規分布の確率変数の二乗である。正規分布の平均は ::<math>(\pi_{DA}-\pi_{CA})\left \[ \frac{2N_1 \phi(1-\phi)}{\bar{\pi}_A(1-\bar{\pi}_A)}\right \] ^{\frac{1}{2}}</math> ::と ::<math>(\pi_{DA}-\pi_{CA})(q_{AB}-q_{aB})\left \[ \frac{2N_2 \phi(1-\phi)}{\bar{\pi}_B(1-\bar{\pi}_B)}\right \] ^{\frac{1}{2}}</math> ::で ::<math>\bar{\pi}_A=\phi \pi_{DA}+(1-\phi) \pi_{CA} \approx \pi_A</math> *ここで、(下の式は自分で導出できず) ::<math>r^2=\frac{(q_{AB}-q_{aB})^2\pi_A(1-\pi_A)}{\pi_B(1-\pi_B)}</math> *したがって、N<sub>2</sub>=N<sub>1</sub>/r<sup>2</sup>のとき<math>\chi^2_2</math>は<math>\chi^2_1</math>とほぼ同じ分布となる。
=項目= *[[アーミテージ検定]] =その他= ==<math>\lambda_s</math>== *Risch 1990のレビュー三枚により使われるようになった。このとき、多重ローカスモデルではλは各ローカスのλの積で表される(<math>\lambda=\lambda_1 \lambda_2 ... \lambda_i</math>)ことを示した。 *またある状況では罹患同胞対連鎖解析の検出力を予測できることを示したが、これは否定されたよう ==sequence coverage== * raw value for coverage: :<math>\frac{L+T}{R}</math> ここでRはリファレンスであるSNPセット(たとえばHapMap SNP)、Tはtag SNPセット(tagSNPと、それによってまとめられるSNP)である。ここで、ゲノム全体のSNPセット<math>G>R</math>であるためこの式ではcoverageを過大に評価してしまう。したがって :<math>\frac{\left ( \frac{L}{R-T} \right ) (G-T)+T}{G}</math> ENCODEの予測から、<math>G \approx</math>7500万と示唆されているが、これが1億だからといって予測が大きく変わるわけではない。 ==r<sup>2</sup>とpower== *真のsusceptible locusであるlocus 1でcase-control N<sub>1</sub>サンプルをタイピング、近傍のマーカーlocus 2でN<sub>2</sub>サンプルをタイピングし関連研究をしたとする。 **locus 1のアレルはAとa、locus2のアレルはBとb。 **<math>\pi_{DA}</math>はケースのAアレル頻度、<math>\pi_{CA}</math>はコントロールのAアレル頻度。 **q<sub>AB</sub>はある染色体上でlocus1がアレルA、locus2がアレルBである確率。 *すると、(論文ではつづめてあったがバカな自分のために展開) ::<math>\pi_{DB}-\pi_{CB}=(\pi_{DA}-\pi_{CA})q_{AB}+(\pi_{Da}-\pi_{Ca})q_{aB}</math> ::<math>=(\pi_{DA}-\pi_{CA})q_{AB}+(1-\pi_{DA}-1+\pi_{CA})q_{aB}</math> ::<math>=(\pi_{DA}-\pi_{CA})(q_{AB}-q_{aB})</math> *するとlocus1での関連解析の[[遺伝用語#カイ二乗|カイ二乗統計量]]は、ケースのサンプル数:コントロールのサンプル数=φ:1-φとすると、 ::<math>\chi^2_1 = \frac{\{(\phi 2N_1+(1-\phi) 2N_1\}\{\phi 2N_1\hat{\pi}_{DA}(1-\phi)2N_1\hat{\pi}_{Ca}-\phi 2N_1\hat{\pi}_{Da}(1-\phi)2N_1\hat{\pi}_{CA}\}^2}{\phi 2N_1 (1-\phi) 2N_1 \hat{\pi}_A 2N_1 (1-\hat{\pi}_A)}</math> ::<math>= \frac{(\hat{\pi}_{DA}-\hat{\pi}_{CA})^2 2N_1 \phi (1-\phi)}{\hat{\pi}_A(1-\hat{\pi}_A)}</math> ::ここで、<math> \hat{\pi}_{DA}, \hat{\pi}_{CA}, \hat{\pi}_A</math>はそれぞれ患者、コントロール、全体でのアレルAのサンプル頻度である。AをBにしてN<sub>1</sub>をN<sub>2</sub>にすればlocus 2の<math>\chi^2_2</math>となる。 *<math>\chi^2_1</math>と<math>\chi^2_2</math>の分布はだいたい正規分布の確率変数の二乗である。正規分布の平均は ::<math>(\pi_{DA}-\pi_{CA})\left \[ \frac{2N_1 \phi(1-\phi)}{\bar{\pi}_A(1-\bar{\pi}_A)}\right \] ^{\frac{1}{2}}</math> ::と ::<math>(\pi_{DA}-\pi_{CA})(q_{AB}-q_{aB})\left \[ \frac{2N_2 \phi(1-\phi)}{\bar{\pi}_B(1-\bar{\pi}_B)}\right \] ^{\frac{1}{2}}</math> ::で ::<math>\bar{\pi}_A=\phi \pi_{DA}+(1-\phi) \pi_{CA} \approx \pi_A</math> *ここで、(下の式は自分で導出できず) ::<math>r^2=\frac{(q_{AB}-q_{aB})^2\pi_A(1-\pi_A)}{\pi_B(1-\pi_B)}</math> *したがって、N<sub>2</sub>=N<sub>1</sub>/r<sup>2</sup>のとき<math>\chi^2_2</math>は<math>\chi^2_1</math>とほぼ同じ分布となる。

表示オプション

横に並べて表示:
変化行の前後のみ表示:
ツールボックス

下から選んでください:

新しいページを作成する
ヘルプ / FAQ もご覧ください。