(輪読用)Differential Forms with Apprications to the Physical Sciences
chap5.misc
最終更新:
satoshi
-
view
接ベクトル
とかけます。
ここで飛躍して
をベクトルとしてしまう!(やっぱり違和感)
点pの基底は
多様体の場合も点pにおける「接空間の基底Tp(M)」を
とする。n次元多様体なら基底はn個。
とする。n次元多様体なら基底はn個。
M上の点pの任意のベクトルは
とと線形結合でかける。
同じベクトルがオーバラップする別の座標系で
と表されたとき、偏微分の記号の意味どおり計算すると(接ベクトルの)成分の変換則が得られる。
とと線形結合でかける。
同じベクトルがオーバラップする別の座標系で
と表されたとき、偏微分の記号の意味どおり計算すると(接ベクトルの)成分の変換則が得られる。