微分前 微分後
 x^{\alpha}  \alpha x^{\alpha - 1}
 \{f(x)\}^{\alpha}  \alpha \{f(x)\}^{\alpha - 1} \cdot f'(x)
 \{f(x)\}^{1/2}  \frac{f'(x)}{2 \sqrt{f(x)}}
 \log{ \mid f(x) \mid }  \frac{f'(x)}{f(x)}
 \sin{x}  \cos{x}
 \cos{x}  - \sin{x}
 \tan{x}  \frac{1}{\cos^2{x}} = \sec^2{x}
 \frac{1}{\tan{x}}  - \frac{1}{\sin^2{x}} = - cosec^2{x}
 e^x  e^x
 e^{f(x)}  f'(x) \cdot e^{f(x)}
 a^x  a^x \log{a}
 a^{f(x)}  f'(x) \cdot a^{f(x)} \log{a}
 x^x  x^x (1 + \log{x})
 f(x)g(x)  f'(x)g(x) + f(x)g'(x)
 \frac{f(x)}{g(x)}  \frac{f'(x)g(x) - f(x)g'(x)}{ \{g(x)\}^2 }
 Arcsin \ x  \frac{1}{\sqrt{1-x^2}}
 Arccos \ x  - \frac{1}{\sqrt{1-x^2}}
 Arctan \ x  \frac{1}{1+x^2}
 Arcsin \left( \frac{x}{a} \right)  \frac{1}{\sqrt{a^2-x^2}} \ \ (a > 0)
 \log{\mid x + \sqrt{x^2+a} \mid}  \frac{1}{\sqrt{x^2+a}} \ \ (a \neq 0)
 \frac{1}{2} \left\{ x \sqrt{a^2-x^2} + a^2 \ Arcsin \left( \frac{x}{a} \right) \right\}  \sqrt{a^2-x^2} \ \ (a > 0)
 \frac{1}{2} \left( x \sqrt{x^2+a} + a \log{\mid x + \sqrt{x^2+a} \mid}  \right)  \sqrt{x^2+a} \ \ (a \neq 0)
 \frac{1}{a} Arctan \left( \frac{x}{a} \right)  \frac{1}{x^2+a^2} \ \ (a \neq 0)
 \frac{1}{2a} \log{\mid \frac{x-a}{x+a} \mid}  \frac{1}{x^2-a^2} \ \ (a \neq 0)
微分前 微分後

タグ:

解析学
最終更新:2013年02月14日 17:36