1次元波動方程式の一般解の検証

波動方程式(電場 E の場合)


(\frac {\partial^{2} }{\partial x^2} - 
\frac {1}{c^{2}} \frac {\partial^{2} }{\partial t^2}) E = 0

一般解

E=F(x-ct)+G(x+ct)

前進波:F(x-ct) 後退波:G(x+ct)

検証


(\frac {\partial^{2} }{\partial x^2} - 
\frac {1}{c^{2}} \frac {\partial^{2} }{\partial t^2}) E


=(\frac {\partial^{2} }{\partial x^2} - 
\frac {1}{c^{2}} \frac {\partial^{2} }{\partial t^2}) 
\bigl\{F(x-ct)+G(x+ct)\bigr\}


=\frac {\partial^{2} }{\partial x^2}F(x-ct) - 
\frac {1}{c^{2}} \frac {\partial^{2} }{\partial t^2}F(x-ct)
+\frac {\partial^{2} }{\partial x^2}G(x+ct) - 
\frac {1}{c^{2}} \frac {\partial^{2} }{\partial t^2}G(x+ct)


=\frac {\partial }{\partial x}F'(x-ct) - 
\frac {1}{c^{2}} \frac {\partial}{\partial t}(-c)F'(x-ct)
+\frac {\partial }{\partial x}G'(x+ct) - 
\frac {1}{c^{2}} \frac {\partial }{\partial t}(+c)G'(x+ct)


=F''(x-ct) - 
\frac {1}{c^{2}} (c^{2})F''(x-ct)
+G''(x+ct) - 
\frac {1}{c^{2}} (c^{2})G''(x+ct)


=F''(x-ct) - F''(x-ct)
+G''(x+ct) - G''(x+ct)


=0

タグ:

+ タグ編集
  • タグ:
最終更新:2009年08月03日 22:48