と
正規分布する母集団のんぷの中心を示す母集団

、および分布のひろがりを示す母標準偏差

は、通常は直接知ることができない。
→母集団から抽出した資料から求めた資料平均

を

の推定値。資料の標準偏差

を

の推定値とする。
→
と
の精度はどのくらいか?
(検討ポイント)
平均値

、標準偏差

の正規分布する母集団から、資料

を

こ抽出して求めた

の平均値

の分布は?またその分布から何がわかるか?
ノーマルチップス
シューハートのノーマル・チップス(表27)をグラフ化すると以下のような正規分布になる。
図1.シューハートのノーマル・チップス。総枚数998枚。
平均値30、標準偏差10の正規分布。
この中から無作為にチップを抜き出す行為は、

が30、

が1の正規分布する母集団から試料を抽出することに値する。このときの

の分布はどのようになるか?
シミュレーション
よくかきまぜた998枚のチップから無作為に1枚を抽出し、再び箱の中に戻し、さらによくかきまぜて1枚を取り出す行為を5回繰り返す。取り出した5枚を1組として試料平均値

を記録する(正規母集団から無作為に5個の試料をサンプリングして試料平均値を算出)。
→この操作100組のデータが表29(p.74)である。
平均値

の平均値=29.70
平均値

の標準偏差=4.65
の分布
表29のデータの度数分布図(図30)からわかること。
- 母集団の平均値30日回試料平均値の頻度が多い。しかし、少数ながら、18や40のように離れた数値も存在する。
=29.7で
=30に近い。→試料平均値が母集団の平均値の良い推定値になる。
の分布の標準偏差→不偏分散
より求める。
=4.65となり、母集団の標準偏差10よりも小さい(重要!)
推定の制度と
の標準偏差
試料平均値の分布の標準偏差とは何を意味するのか?→試料平均値から母集団平均値を推定する精度。
「母平均値

、母標準偏差

の正規分布する母集団からn個の試料を抽出して試料平均値

を求めると、

は平均値

で標準偏差が

の正規分布となる。」
図2.正規母集団分布→試料平均値の分布→t分布への変換
(佐藤信「
推計学のすすめ」p.78)
→

が大きくなればなるほど、

の精度はよくなる(図2の(ロ))。しかし、図32(p.79)に示すように、

30になると、制度の向上は小さくなる。(サンプル数の目安になる?)
分布を導く
母平均値

、母標準偏差

は、一般的には不明である。→試料平均値

および試料平均値の標準偏差

から母集団が推定できるか?
以下の操作を行う。
試料平均値と母平均値との差
この差を

の標準偏差の単位ではかると考えると、
―――――――――――

の標準偏差
ただし、

の標準偏差は

であるが、

も未知であるため、

で代用する。
この式は、図31(ハ)に示すように、

の分布を平均値0、標準偏差1の分布に基準化したことに相当する。→

分布(p.56,58の図20,21に示した正規分布の基準化の手続きと比較せよ。

分布と正規分布の相違点は

の代わりにその推定値

を用いている点である)。
分布表(p.82)
図33

分布表 自由度(n-1)
(佐藤信「推計学のすすめ」p.82)

分布表…

分布の中心0から

以上はなれた値が出現する確率を分布の面積で表したもの。例えば、自由度3のとき、両裾の斜線部分をあわせた面積が5%となる

の絶対値は、

=3.18となる。

分布は、母集団から試料を抽出する数

によって、分布の形が変形する。→標準偏差が1/

の割合で変化するため。
分布による検定
p.85では、2杯の試料から「バー・エックスのシングル1杯は30mLである」という仮説が棄却できるか?を問題としている。

=2の場合バー・エックスのシングル1杯が30mLであるとはいえないという結論に達した(仮説は捨てられない)が、

の数を増やすと

の精度が増すため、仮説を捨てられる可能性がある。このように、一度仮説が捨てられない結果が得られ、実験制度に不備の可能性があると考えられる場合は、実験計画の見直し、試料を増やすなどの再実験が必要である。
自由度(Degree-of-freedom)の定義
一般に、変数のうち独立に選べるものの数、すなわち全変数の数から、それら相互間に成り立つ関係式(束縛条件、拘束条件)の数を引いたもの。自由度1といった具合に表現する。
自由度は、力学・機構学・統計学などで使用され、意味は上記の定義に順ずるが、それぞれの具体的に示唆する処は異なる。
統計学では、各種の統計量に関して自由度が定義される。大きさ

の標本における観測データ

の自由度は

とする。それらから求めた標本平均についても同様である。
不偏分散

については、

という関係式(ここで

は母集団平均

の推定量である)があるから、自由度は1少ない

-1となる。そのため分母には

-1を用いる。
最終更新:2008年08月19日 12:52