\documentclass{jarticle}
\begin{document}
\title{浅野・中村2009 9-1}
\author{名無し}
\maketitle
\section{演習問題}
(a)対数尤度関数\\
分布関数P(x)=$exp(-\lambda)*\lambda^x/{x!}$(x=0,1,2,...,n,$\lambda>0$)\\
$X_{1},X_{2},X_{3},...,X_{n}$:無作為標本\\
回答例\\
$X_{1}$について\\
$P(X_{1})$=$exp(-\lambda)*\lambda^X_{1}/{X_{1}!}$\\
全体では、\\
$L=\sum_{i=1}^n P(X_{i})=\sum_{i=1}^n
exp(-\lambda)*\lambda^X_{i}/{X_{i}!}$\\
$ln(L)=ln(\sum_{i=1}^n P(X_{i}))=-n\lambda+\sum_{i=1}^n
x_{i}ln(\lambda)-\sum_{i=1}^n ln({X_{i}!})$\\
(b)MLEを求める\\
$\frac{\partial L}{\partial \lambda}= -n+\frac{\sum_{i=1}^n
x_{i}}{n}=\bar{x}$\\
\end{document} |