病的な関数

「病的な関数」の編集履歴(バックアップ)一覧はこちら

病的な関数 - (2010/11/10 (水) 11:30:10) の1つ前との変更点

追加された行は緑色になります。

削除された行は赤色になります。

== 関数の不連続性について == '''Def. set of discontinuity''' Given a function f:R→R, define D<sub>f</sub>⊂R to be the set of points where the function f fails to be continuouts. '''Def. F<sub>σ</sub> set''' A set that can be written as the countable union of closed sets is in the class F<sub>σ</sub> '''Th. ''' Given f:R→R be an arbitrary function. Then, D<sub>f</sub> is an F<sub>σ</sub> set. '''Cor. ''' (with Baire's category theorem, the set of irrational points is not F<sub>σ</sub> set.) There is no function f that is continuous at every rational point and discontinuous at every irrational point. <math>\neg {}^\exists f:\mathbb{R} \to \mathbb{R} \mbox{ s.t. } D_f = \mathbb{I}</math> '''Def. Dirichlet's function''' <math>g(x) := \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}</math> a nowhere-continuous function on R <math>D_g = \mathbb{R}</math> '''Def. Modified Dirichlet's function''' <math>h(x) := \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}</math> not continuous at every point x≠0 <math>D_h = \mathbb{R} \setminus \{ 0 \}</math> '''Def. Thomae's function 1875''' <math>t(x) := \begin{cases} 1 & x=0 \\ \frac{1}{n} & x=\frac{m}{n} \in \mathbb{Q}^\times \mbox{ where }m,n \mbox{ is coprime and } n>0 \\ 0 & x \notin \mathbb{Q} \end{cases} </math> t(x) fails to be continuous at any rational point. whereas t(x) is continuous at every irrational point on R. それぞれQに収束する点列・Iに収束する点列をとってみれば分かる。 <math>D_t = \mathbb{Q}</math> == 関数の微分可能性について == '''Def. Weierstrass 1872''' a class of continuous nowhere-differentiable function <math>f(x) := \sum_{n=0}^\infty a^n \cos (b^n x)</math> where the values of a and b are carefully chosen. '''Def. Takagi''' <math>\sum_{n=0}^\infty \frac{1}{2^n} h(2^n x)</math> where <math>h(x) := |x| \, \mod [-1,1]</math> '''Cor. of Baire's Category theorem''' 世の中の連続関数はだいたい Weierstrass 関数みたいに,全域で微分不能 '''Th. Lebesgue 1903''' a continuous, monotone function would have to be differentiable at almost every point in its domain.
== 関数の不連続性について == '''Def. set of discontinuity''' Given a function f:R→R, define D<sub>f</sub>⊂R to be the set of points where the function f fails to be continuouts. '''Def. F<sub>σ</sub> set''' A set that can be written as the countable union of closed sets is in the class F<sub>σ</sub> '''Th. ''' Given f:R→R be an arbitrary function. Then, D<sub>f</sub> is an F<sub>σ</sub> set. '''Cor. ''' (with Baire's category theorem, the set of irrational points is not F<sub>σ</sub> set.) There is no function f that is continuous at every rational point and discontinuous at every irrational point. <math>\neg {}^\exists f:\mathbb{R} \to \mathbb{R} \mbox{ s.t. } D_f = \mathbb{I}</math> '''Def. Dirichlet's function''' <math>g(x) := \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}</math> a nowhere-continuous function on R <math>D_g = \mathbb{R}</math> '''Def. Modified Dirichlet's function''' <math>h(x) := \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}</math> not continuous at every point x≠0 <math>D_h = \mathbb{R} \setminus \{ 0 \}</math> '''Def. Thomae's function 1875''' <math>t(x) := \begin{cases} 1 & x=0 \\ \frac{1}{n} & x=\frac{m}{n} \in \mathbb{Q}^\times \mbox{ where }m,n \mbox{ is coprime and } n>0 \\ 0 & x \notin \mathbb{Q} \end{cases} </math> t(x) fails to be continuous at any rational point. whereas t(x) is continuous at every irrational point on R. それぞれQに収束する点列・Iに収束する点列をとってみれば分かる。 <math>D_t = \mathbb{Q}</math> <math>\sin \frac{1}{x}</math> は,区間(0,1]で連続かつ有界であるが、一様連続ではない == 関数の微分可能性について == '''Def. Weierstrass 1872''' a class of continuous nowhere-differentiable function <math>f(x) := \sum_{n=0}^\infty a^n \cos (b^n x)</math> where the values of a and b are carefully chosen. '''Def. Takagi''' <math>\sum_{n=0}^\infty \frac{1}{2^n} h(2^n x)</math> where <math>h(x) := |x| \, \mod [-1,1]</math> '''Cor. of Baire's Category theorem''' 世の中の連続関数はだいたい Weierstrass 関数みたいに,全域で微分不能 '''Th. Lebesgue 1903''' a continuous, monotone function would have to be differentiable at almost every point in its domain.

表示オプション

横に並べて表示:
変化行の前後のみ表示:
ツールボックス

下から選んでください:

新しいページを作成する
ヘルプ / FAQ もご覧ください。