<math>f_0(x) := x \mbox{ for all } x \in [0,1]</math> <math>f_1(x) := \begin{cases} \frac{3}{2}x & 0 \leq x \leq \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} < x < \frac{2}{3} \\ \frac{3}{2}x-\frac{1}{2} & \frac{2}{3} \leq x \leq 1 \end{cases}</math> <math>f_2(x) := \begin{cases} \frac{1}{2}f_1(3x) & 0 \leq x \leq \frac{1}{3} \\ f_1(x) & \frac{1}{3} < x < \frac{2}{3} \\ \frac{1}{2}f_1(3x-2)+\frac{1}{2} & \frac{2}{3} \leq x \leq 1 \end{cases}</math> … <math>f(x) := \lim_{n \to \infty} f_n(x) \mbox{ uniformly on } [0,1]</math> is a continuous, increasing function on [0,1] with f(0)=0 and f(1)=1 that satisfies f'(x)=0 for all x in the open set [0,1]-C where, C⊂[0,1] is the Cantor Set.