テンプレ
※「前スレ」の部分(スレタイ、アドレス)は随時編集してください。
大学受験板
数学の問題に関する質問をどうぞ。参考書・勉強の仕方等は各専用スレッドで。
質問をする際の注意
★★★必ず最後まで読んでください★★★
●マルチポスト(マルチ)をした質問には原則一切回答しません。
マルチポストとは→
http://e-words.jp/w/E3839EE383ABE38381E3839DE382B9E38388.html
マルチポストの指摘はURLつきで。
●その問題をどこまで解いたのか、どの部分が分からないのか、具体的に書く。
●回答者はいろいろな方法を用いるので、必要ならどの方法で解くか、自分がどこまで
履修済みか書く。(例:ベクトルで解く方法を知りたい、数IAの範囲で、など)
●数式を書くときは、極力誤解のない書き方をする。
(例1)1/2aは(1/2)あるいは1/(2a)ともとれるので誤解されないように( )を使って書く。
(例2)数列の場合も、anよりもa(n)、a[n]、a_nなどと表す方が添え字がわかりやすい。
●下のリンクの数学記号の書き方をよく読んで、他の人が読んでも問題がわかるように書く。
慣習的でない記号、用語を使うときはそれの説明も書く。
●問題・条件などを省くと答えられない場合が多い。できるだけ問題文すべて、必要なら解答、
解説部分も書く。特に「○○問題集の○ページor問○を教えてください」だけ書くような
質問は回答が遅れるだけで結局すべて書くことになります。
●どうしても画像を貼る場合はPCから直接見られるところに見やすい画像を貼ってください。
ピクトはPCから見られないことがあるので避けてください。
●携帯からの質問はそちらの都合ですので、回答者に配慮を求めないでください。
数学記号の書き方
http://members.at.infoseek.co.jp/mathmathmath/
前スレ
***数学の質問スレ【大学受験板】part??***
数学板
まず>>1-5をよく読んでね
●まずは教科書、参考書、web検索などで調べるようにしましょう。(特に基本的な公式など)
●問題の写し間違いには気をつけましょう。
●長い分母分子を含む分数はきちんと括弧でくくりましょう。
(× x+1/x+2 ; ○ ( (x+1)/(x+2)) )
●質問者は名前を騙られたくない場合、トリップを付けましょう。 (トリップの付け方は 名前(N)に 俺!#oretrip ←適当なトリ)
●質問者は回答者がわかるように問題を書くようにしましょう。でないと放置されることがあります。
(変に省略するより全文書いた方がいい、また説明なく習慣的でない記号を使わないように)
●質問者は何が分からないのか、どこまで考えたのかを明記しましょう。それがない場合、放置されることがあります。
(特に、自分でやってみたのにあわないので教えてほしい、みたいなときは必ず書くように)
●マルチ(マルチポスト)は放置されます。
●950くらいになったら次スレを立ててください。
●自己解決した場合は、それに至った過程を書かなければ自己解決とみなされません。
基本的な記号の使い方は以下を参照してください。その他については>>1のサイトで。
■ 足し算/引き算/掛け算/割り算(加減乗除)
a+b → a 足す b (足し算)
a-b → a 引く b (引き算)
a*b → a 掛ける b (掛け算)
a/b → a 割る b (割り算)
■ 累乗 ^
a^b a の b乗
a^(b+1) a の b+1乗
a^b + 1 (a の b乗) 足す 1
■ 括弧の使用
a/(b + c) と a/b + c
a/(b*c) と a/b*c
はそれぞれ、違う意味です。括弧を多用して、キチンと区別をつけてください。
■ 数列
a[n] or a(n) → 数列aの第n項目
a[n+1] = a[n] + 1 → 等差数列の一例
Σ[k=1,n]a(k) → 数列の和
■ 積分
∫[0,1] x^2 dx
∫[0,x] sin(t) dt
■ 三角関数
(sin(x))^2 + (cos(x))^2 = 1
cos(2x) = (cos(x))^2 - (sin(x))^2
■ ベクトル
AB↑ a↑
数式の書き方(参考)
●スカラー:a,b,...,z, A,...,Z, α,β,...,ω, Α,Β,...,Ω,...(「ぎりしゃ」「あるふぁ~おめが」で変換)
●ベクトル:V=[v1,v2,...], |V>>,V↑,vector(V) (混同しないならスカラーの記号でいい。通常は縦ベクトル)
●テンソル:T^[i,j,k...]_[p,q,r,...], T[i,j,k,...;p,q,r,...] (上下付き1成分表示)
●行列 M[i,j], I[i,j]=δ_[i,j] M=[[M[1,1],M[2,1],...],[M[1,2],M[2,2],...],...], I=[ [1,0,0,...],[0,1,0,...],...]
(右は全成分表示。行または列ごとに表示する。例:M=[ [1,-1],[3,2]])
●転置行列・随伴行列:M ',tM, M†("†"は「きごう」で変換可) ●行列式・トレース:|A|=det(A), tr(A)
●複号:a±b("±"は「きごう」で変換可)
●内積・外積・3重積:a・b, a×b, a・(b×c)=(a×b)・c=det([a,b,c]), a×(b×c)
●関数・数列:f(x), f[x] a(n), a[n], a_n
●平方根:√(a+b)=(a+b)^(1/2)=sqrt(a+b) ("√"は「るーと」で変換可)
●指数関数・対数関数:exp(x+y)=e^(x+y) ln(x/2)=log[e](x/2)(exp(x)はeのx乗、lnは自然対数)
●三角比:sin(a), cos(x+y), tan(x/2)
●絶対値:|x| ●共役複素数:z~ ●ガウス記号:[x] (関数の変数表示と混同しないよう注意)
●階乗:n!=n*(n-1)*(n-2)*...*2*1, n!!=n*(n-2)*(n-4)*...
●順列・組合せ:P[n,k]=nPk, C[n,k]=nCk, Π[n,k]=nΠk, H[n,k]=nHk ("Π"は「ぱい」で変換可)
数式の書き方続き(参考)
●微分・偏微分:dy/dx=y', ∂y/∂x=y_x ("∂"は「きごう」で変換可)
●ベクトル微分:∇f=grad(f), ∇・A=div(A),∇xA=rot(A), (∇^2)f=Δf ("∇"は「きごう」,"Δ"は「でるた」で変換可.)
●積分:∫[0,1]f(x)dx=F(x)|_[x=0,1], ∫[y=0,x]f(x,y)dy, ∬[D]f(x,y)dxdy, ∬[C]f(r)dl ("∫"は「いんてぐらる」,"∬"は「きごう」で変換可)
●数列和・数列積:Σ[k=1,n]a(k), Π[k=1,n]a(k) ("Σ"は「しぐま」,"Π"は「ぱい」で変換可)
●極限:lim[x→∞]f(x) ("∞"は「むげんだい」で変換可)
●図形:"△"は「さんかく」 "∠"は「かく」 "⊥"は「すいちょく」 "≡"は「ごうどう」 "∽"は「きごう」
●論理・集合:"⇔⇒∀∃∧∨¬∈∋⊆⊇⊂⊃∪∩"は「きごう」で変換
●等号・不等号:"≠≒<>≦≧≪≫"は「きごう」で変換
主な公式と記載例
(a±b)^2=a^2±2ab+b^2
(a±b)^3=a^3±3a^2b+3ab^2±b^3
a^3±b^3=(a±b)(a^2干ab+b^2)
√a*√b=√(ab)、√a/√b=√(a/b)、 √(a^2b)=a√b [a>0、b>0]
√( (a+b)±2√(ab))=√a±√b [a>b>0]
ax^2+bx+c=a(x-α)(x-β)=0 [a≠0、α+β=-b/a、αβ=c/a]
(α,β)=(-b±√(b^2-4ac))/2a [2次方程式の解の公式]
a/sin(A)=b/sin(B)=c/sin(C)=2R [正弦定理]
a^2=b^2+c^2-2bccos(A) [余弦定理]
sin(a±b)=sin(a)cos(b)±cos(a)sin(b) [加法定理]
cos(a±b)=cos(a)cos(b)干sin(a)sin(b)
log_{a}(xy)=log_{a}(x)+log_{a}(y)
log_{a}(x/y)=log_{a}(x)-log_{a}(y)
(log_{a}(x))^n=n(log_{a}(x))
log_{a}(x)=(log_{b}(x))/(log_{b}(a)) [底の変換定理]
f'(x)=lim_[h→0] (f(x+h)-f(x))/h [微分の定義]
(f±g)'=f'±g'、(fg)'=f'g+fg'、(f/g)'=(f'g-fg')/(g^2) [和差積商の微分]
- 編集したひとは改良点等をここに書くと分かりやすいかも。 -- 名無しさん (2009-02-12 06:52:15)
- 「三角関数を用いた置換積分法」の部分、もともとの積分変数がxだったのにθで終わっておいていいの?まあ高校でarctan(x)は使えないから仕方ないことではあるけど。 -- 名無しさん (2009-02-12 21:04:27)
- あれは定積分で出される問題だね。高校範囲だと。 -- 名無しさん (2009-02-14 13:54:43)
- 不等式1.2のn乗く100を満たす整数nの最大値は? -- 名無しさん (2010-12-09 21:19:10)
最終更新:2010年12月09日 21:19